Answers for Lesson 6-1, pp. 312–315 Exercises

1. 3; the temperature increases 3°F each hour.
2. 3.95; the cost per person is $3.95.
3. $\frac{-1}{15}$ gal/mi
4. $\frac{2}{3}$; there are 2 lb of carbon emissions for every 3 h of television use.
5. $-16\frac{2}{3}$; the skydiver descends 16$\frac{2}{3}$ ft/s.
6. $\frac{1}{4}$; the cost of oregano is $1 for 4 ounces.

7. $\frac{1}{2}$
8. -3
9. $\frac{2}{3}$
10. 2
11. 2
12. $\frac{3}{4}$
13. $-\frac{3}{2}$
14. -1
15. -1
16. $\frac{5}{9}$
17. $\frac{5}{3}$
18. $-\frac{6}{5}$
19. $-\frac{2}{5}$
20. $\frac{1}{2}$
21. -5
22. 0
23. undefined
24. 0
25. undefined
26. undefined
27. $\frac{9}{10}$ in./month
28. $\frac{\$5}{\text{person}}$
29. 30 mi/hr
30. $\frac{1}{2}$
31. $\frac{1}{6}$
32. $\frac{1}{4}$
33. -20
34. undefined
35. -3
36. (Diagram of graph showing a line through the points (0, 4), (2, 2), and (4, 0))
Answers for Lesson 6-1, pp. 312–315 Exercises (cont.)

37. [Diagram]

38. [Diagram]

39. [Diagram]

40. a. \(C \)

b. \(C \) greatest; \(A \) least; the slope

41. a. \(\frac{2}{3} \)

b. \(\frac{2}{3} \)

c. Answers may vary. Sample:
 \[\frac{y_2 - y_1}{x_2 - x_1} = \frac{y_1 - y_2}{x_2 - x_1} \]

42. \(2\frac{2}{3}; 3\frac{3}{5} \)

43. No; for example, the line passing through two points such as (1, 6) and (2, 5) has a slope of \(-1\).

44. \(\overline{PQ}: \frac{1}{2}; \overline{QR}: 0; \overline{RS}: 5; \overline{SP}: -1 \)

45. \(\overline{JK}: -\frac{1}{2}; \overline{KL}: 2; \overline{ML}: -\frac{1}{2}; \overline{MJ}: 2 \)

46. a. [Diagram]

b. \(-\frac{2}{3} \)

c. \(-\frac{2}{3} \)

d. equal

47. a. Answers may vary. Sample: (0, 0), \(\left(1, \frac{3}{4} \right) \)

b. Answers may vary. Sample: (0, 0), \(\left(1, -\frac{1}{2} \right) \)

48. 0

49. \(-6\)

50. 6

51. 4

52. 12

53. 3
Answers for Lesson 6-1, pp. 312–315 Exercises (cont.)

54–60. Counterexamples may vary.

54. False; it can be neg. or undefined; for instance, the rate of change for (2, 3) and (4, −1) is negative.

55. true 56. false; \(y = x + 2 \) 57. true

58. false; \(y = x \) 59. false; \(y = 0x \) 60. true

61. a. 111; $111/h b. 56 customers per h

62. Friend found \(\frac{\text{run}}{\text{rise}} \) instead of \(\frac{\text{rise}}{\text{run}} \).

63. 0 64. \(-\frac{n}{2m}\) 65. \(\frac{2d - b}{c - 2a}\)

66. Yes; \(\overrightarrow{AB} \) and \(\overrightarrow{BC} \) have the same slope.

67. Yes; \(\overrightarrow{GH} \) and \(\overrightarrow{HI} \) have the same slope.

68. No; \(\overrightarrow{DE} \) and \(\overrightarrow{EF} \) do not have the same slope.

69. No; \(\overrightarrow{PQ} \) and \(\overrightarrow{QR} \) do not have the same slope.

70. Yes; \(\overrightarrow{GH} \) and \(\overrightarrow{HI} \) have the same slope.

71. No; \(\overrightarrow{ST} \) and \(\overrightarrow{TX} \) do not have the same slope.
Answers for Lesson 6-2, pp. 320–322 Exercises

1. $-2; 1$
2. $-\frac{1}{2}; 2$
3. $1; -\frac{5}{4}$
4. $5; 8$
5. $\frac{2}{3}; 1$
6. $-4; 0$
7. $-1; -7$
8. $-0.7; -9$
9. $-\frac{3}{4}; -5$
10. $y = \frac{2}{9}x + 3$
11. $y = 3x + \frac{2}{9}$
12. $y = \frac{9}{2}x + 3$
13. $y = 1$
14. $y = -x - 6$
15. $y = -\frac{2}{3}x + 5$
16. $y = 0.3x + 4$
17. $y = 0.4x + 0.6$
18. $y = -7x + \frac{1}{3}$
19. $y = -\frac{1}{5}x - \frac{2}{5}$
20. $y = -\frac{1}{4}x + \frac{5}{4}$
21. $y = \frac{8}{3}x + \frac{2}{3}$
22. $y = -\frac{2}{3}x + 1$
23. $y = \frac{3}{4}x + 2$
24. $y = 2x - 2$
25. $y = \frac{1}{2}x + \frac{1}{2}$
26. $y = -\frac{2}{3}x + \frac{14}{5}$
27. $y = \frac{5}{4}x - \frac{1}{2}$

28. \[y = \frac{1}{2}x + 4 \]

29. \[y = \frac{2}{3}x - 1 \]
Answers for Lesson 6-2, pp. 320–322 Exercises (cont.)

30. \(y = -5x + 2 \)

31. \(y = 2x + 5 \)

32. \(y = x + 4 \)

33. \(y = -x + 2 \)

34. \(y = 4x - 3 \)

35. \(y = -\frac{3}{2}x \)
Answers for Lesson 6-2, pp. 320–322 Exercises (cont.)

36. \[y = \frac{2}{3}x - 3 \]

37. \[y = -\frac{2}{3}x + 2 \]

38. \[y = -\frac{4}{3}x + 4 \]

39. \[y = -0.5x + 2 \]

40. a. \[t = 14c - 4 \]

b. $80

41. \(-3; 2\)

42. \(-\frac{1}{2}; 0\)

43. \(9; \frac{1}{2}\)

44. \(3; -9\)

45. \(\frac{3}{2}; 3\)

46. \(9; -15\)

47. \(c; d\)

48. \(2 - a; a\)

49. \(-3; -2n\)

50. \[y = 7 - 3x \]
Answers for Lesson 6-2, pp. 320–322 Exercises (cont.)

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>51.</td>
<td>(y = -2x)</td>
</tr>
<tr>
<td>52.</td>
<td>(y = -\frac{2}{3}x - 2)</td>
</tr>
<tr>
<td>53.</td>
<td>(y = 5x - 6)</td>
</tr>
<tr>
<td>54.</td>
<td>(y = -\frac{2}{3}x - \frac{1}{3})</td>
</tr>
<tr>
<td>55.</td>
<td>(y = 6x - 8)</td>
</tr>
</tbody>
</table>

56. The slope was used for the \(y \)-int., and the \(y \)-int. was used for the slope.
Answers for Lesson 6-2, pp. 320–322 Exercises (cont.)

57. a.

\[h = -\frac{2}{15}t + 12 \]

b. 90 min

c. 90 min

58. a. Slope represents the weight of a gallon of fuel.

b. 2662 lb

59. no

60. yes

61. no

62. C

63. a. \(t = 5d + 15 \)

b. \(t = 5d + 15 \)

c. Answers may vary. Sample: no neg. charges and no neg. number of days

64. Answers may vary. Sample: Plot point (0, 5), then move up 3 and right 4. Plot (4, 8) and connect the two points.

65. A; slope in A = \(\frac{10}{4.5} \geq \frac{8}{4} = 2 = \) slope in B.

66. \(y = 2x - 1 \)

67. \(y = -4x + 7 \)

68. \(y = -\frac{1}{2}x + 8 \)

69. \(y = \frac{1}{4}x + 5 \)

70. \(y = -x - 3 \)

71. \(y = 3x - 6 \)
Answers for Lesson 6-2, pp. 320–322 Exercises (cont.)

72. a–b. [Graph]

 c. Both; check students’ work.

73. a. \(\frac{1}{4}; \frac{1}{4}\)
 b. 2; −2
 c. same slopes

74. Check students’ work.

75. \(-\frac{1}{2}\)

76. −5

77. \(\frac{3}{4}\)

78. a. [Graph]

 \[x = -2; x = 2\]
 \[y = 3; y = -3\]

 b. Rectangle; check students’ work.

 c. \(y = \frac{3}{2}x\) OR \(y = -\frac{3}{2}x\); explanations may vary.

79. a. \(r = -15d + 265\)
 b. [Graph]

 \[r = -15d + 265\]

 c. 18 days
Answers for Lesson 6-3, pp. 325–327 Exercises

1. Relate length to cost.

<table>
<thead>
<tr>
<th>Length of Beam</th>
<th>Cost of Beams</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>$15</td>
</tr>
<tr>
<td>8</td>
<td>$10</td>
</tr>
<tr>
<td>10</td>
<td>$5</td>
</tr>
<tr>
<td>12</td>
<td>$5</td>
</tr>
</tbody>
</table>

2. Relate number of pounds to cost.

<table>
<thead>
<tr>
<th>Pounds of Chicken</th>
<th>Cost of Chicken</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$15</td>
</tr>
<tr>
<td>2</td>
<td>$10</td>
</tr>
<tr>
<td>4</td>
<td>$5</td>
</tr>
<tr>
<td>6</td>
<td>$5</td>
</tr>
</tbody>
</table>

3. Relate number of movies on card to number of weeks.

<table>
<thead>
<tr>
<th>Number of Weeks</th>
<th>Number of Movies</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
</tr>
</tbody>
</table>

4. a. The slope is 50, which means the helicopter altitude increases 50 ft/min. The y-intercept is 200, which means the roof of the building is 200 ft above ground level.

b. A slope of 85 means the helicopter’s altitude increases 85 ft/min. A y-intercept of 250 means the roof of the building is 250 ft above ground level.
5. a. Yes, the candle burns continuously.
 b. \(h = \) height of candle in inches, and \(t = \) time in hours the candle has burned; \(h = 8 - 2t \)
 c. The graph of the line would be steeper, but the \(y \)-intercept would be the same.

6. a. \(h = \) height of elevator in feet, and \(t = \) time in seconds; \(h = 400 - 10t \)
 b.
 c. Answers may vary. Sample: If there are basement levels of the building, negatives are reasonable in the range.

7. a. Teen World. The slope of the line on the Teen World graph is less than the slope of the line on the Clothing Connection graph. This means that, for items with the same original price, the discounted price at Teen World will also be lower.
 b. Clothing Connection: \(D = 0.8p \); Teen World: \(D = 0.6p \)
 c. $12.80; $9.60

8. a–b. Check students’ work.

9. a. Yes; both time and distance are continuous.
 b. The line will be less steep, because the kayakers are going more slowly. Since the kayakers are headed back to camp, the slope is negative.
Answers for Lesson 6-3, pp. 325–327 Exercises (cont.)

10. **a.** The equations for both direct variations and linear equations have an \(x \)-term. A direct variation has no constant term, which means its graph must go through \((0, 0)\). Some linear functions like \(y = 2x + 0 \) are direct variations, but many like \(y = 2x + 3 \) are not.

b. Answers may vary. Sample: Altitude of skier coming down a mountain.

11. C

12. **a.** \(d = 7e \)

b. 84 dog years

13. **a.** \(C = 4(2.5 + 2g) \)

```
<table>
<thead>
<tr>
<th>Number of Games</th>
<th>Bowling Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$10</td>
</tr>
<tr>
<td>2</td>
<td>$20</td>
</tr>
<tr>
<td>4</td>
<td>$30</td>
</tr>
<tr>
<td>6</td>
<td>$40</td>
</tr>
</tbody>
</table>
```

b. domain: natural numbers; range: 10 plus multiples of 8

14. **a.** \(h = \frac{2}{3}m + 21.5 \)

b. 12 ft

c. The linear model is not a good model for this situation.
Answers for Lesson 6-4, pp. 333–334 Exercises

1. 18; 9
2. 3; −9
3. −6; 30
4. \(\frac{3}{2}; -3 \)
5. \(-\frac{9}{2}; -\frac{3}{2} \)
6. −8; 12
7. 6; 4
8. \(\frac{4}{7}; -2 \)
9. −5; 4
10. B
11. C
12. A
13.
14.
15.
16.
17.
18.
19. horizontal
20. vertical
21. horizontal
22. vertical
23.
24.

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.
Answers for Lesson 6-4, pp. 333–334 Exercises (cont.)

25. \[x - 3y = 1 \]

26. \[x + 2y = 3 \]

27. \[-3x + y = 1\]

28. \[4x - y = 7\]

29. \[x - 2y = 6\]

28. \[-2x + 3y = 15\]

31. \[-3x - 4y = 16\]

30. \[-4x - 5y = 35\]

32. \[x = \text{no. of cars}; y = \text{no. of vans or trucks}\]

31. \[-14x + 4y = 1\]

32. \[4x + 10y = 1\]

33. \[3x + y = 0\]

35. \[3x + y = 0\]

36. a. Answers may vary. Sample: \(x = \text{no. of cars}; y = \text{no. of vans or trucks}\)

b. \[5x + 6.5y = 800\]

37. a. Answers may vary. Sample: \(x = \text{time walking}; y = \text{time running}\)

b. \[3x + 8y = 15\]

38. \[x = \text{no. of cars}; y = \text{no. of vans or trucks}\]

39. \[x = \text{time walking}; y = \text{time running}\]

40. \[x = \text{no. of cars}; y = \text{no. of vans or trucks}\]

41. \[x = \text{time walking}; y = \text{time running}\]
Answers for Lesson 6-4, pp. 333–334 Exercises (cont.)

42.

44.

46.

43.

45.

47.

48.

49.

50.

42. \(3x + 7y = 28\)

44. \(7 \text{ oz} \quad 4.29x + 3.99y = 30\)

46. \(y = \frac{4}{5}x + 10\)

47. a. \(3x + 7y = 28\)

48. \(4.29x + 3.99y = 30\)

49. \(y = \frac{4}{5}x + 10\)

47. b. \(y = \frac{6}{7}x + 3\)

50. \(y = \frac{6}{7}x + 3\)
Answers for Lesson 6-4, pp. 333–334 Exercises (cont.)

51. \(y = -\frac{4}{5}x - 3 \)

52. \(y = \frac{5}{9}x - \frac{5}{3} \)

53. \(y = -\frac{16}{11}x - 8 \)

54. \(y = \frac{1}{5}x - \frac{2}{3} \)

55. Answers may vary. Sample: slope-intercept form when comparing the steepness of two lines; standard form when making quick graphs

56. Answers may vary. Sample: \(0x + 0y = 0 \), no linear equation exists.

57. \(-3x\) instead of \(3x\)

58. \(y = 2 \)

59. \(y = -2 \)

60. \(x = 1 \)

61. \(x = -2 \)
Answers for Lesson 6-4, pp. 333–334 Exercises (cont.)

62. a. \(200s + 150a = 1200\)

 b.

 ![Graph showing student and adult prices]

 Answers may vary. Sample:

 \(s = \$3.00, a = \$4.00\); \(s = \$3.60, a = \$3.20\); \(s = \$4.50, a = \$2.00\)

 \(s = \$3.00\) and \(a = \$4.00\) because they are whole dollar amounts, and adults pay more.

63. \(y = \frac{3}{5}x + 4\)

64.

 ![Graph of a square]

65. a.

 ![Graph showing x and y values]

 b. \(-\frac{2}{3}, \frac{2}{3}\)

 c. Answers may vary. Sample: The \(x\)- and \(y\)-intercepts of \(2x + 3y = 18\) are 3 times those of \(2x + 3y = 6\).
Answers for Lesson 6-5, pp. 339–341 Exercises

1. \[y = 2 \]

2. \[y = 3(x - 3) \]

3. \[y = 6(x - 4) \]

4. \[y = 4(x + 4) \]

5. \[y = 2(x - 2) \]

6. \[y = -3(x + 2) \]

7. \[y = -2(x - 1) \]

8. \[y = -\frac{5}{3}(x - 4) \]

9. \[y = -\frac{3}{5}(x - 2) \]

10. \[y + 4 = 6(x - 3) \]

11. \[y - 2 = -\frac{5}{3}(x - 4) \]

12. \[y - 2 = \frac{4}{5}(x) \]
Answers for Lesson 6-5, pp. 339–341 Exercises (cont.)

13. \(y + 7 = -\frac{3}{2}(x + 2) \)
14. \(y = 1(x - 4) \)
15. \(y + 8 = -3(x - 5) \)
16. \(y - 2 = 0(x + 5) \) or \(y = 2 \)
17. \(y + 8 = -\frac{1}{3}(x - 1) \)
18. \(y - 1 = \frac{2}{3}(x + 6) \)

19–30. Answers may vary for the point indicated by the equation.
19. \(y = 1(x + 1); y = x + 1 \)
20. \(y - 5 = \frac{5}{3}(x - 3); y = \frac{5}{3}x \)
21. \(y + 2 = -\frac{6}{5}(x - 4); y = -\frac{6}{5}x + \frac{14}{5} \)
22. \(y + 4 = -1(x - 6); y = -x + 2 \)
23. \(y + 5 = \frac{1}{6}(x + 1); y = \frac{1}{6}x - \frac{29}{6} \)
24. \(y + 4 = \frac{1}{3}(x + 3); y = \frac{1}{3}x - 3 \)
25. \(y - 7 = 11(x - 2); y = 11x - 15 \)
26. \(y - 6 = -\frac{5}{7}(x + 2); y = -\frac{5}{7}x + \frac{4}{7} \)
27. \(y + 8 = -\frac{13}{5}(x - 3); y = -\frac{13}{5}x - \frac{1}{5} \)
28. \(y - \frac{1}{2} = \frac{3}{4}(x - 1); y = \frac{3}{4}x - \frac{1}{4} \)
29. \(y - 2 = -1(x - \frac{1}{2}); y = -x + \frac{5}{2} \)
30. \(y - 1.1 = \frac{1.9}{6.8}(x - 0.2); y = \frac{1.9}{6.8}x + \frac{7.1}{6.8} \)
31. Yes; answers may vary. Sample: \(y - 9 = -2(x + 4) \)
32. Yes; answers may vary. Sample: \(y - 40 = 3(x - 5) \)
33. no
34. Yes; answers may vary. Sample: \(y - 75 = 10(x - 10) \)
35. no
36–53. Answers may vary for point indicated by the equation.

36. \[y - 2 = \frac{3}{4}(x - 1)\]
37. \[y + 3 = \frac{2}{3}(x - 1)\]
38. \[y = -\frac{5}{7}(x - 5)\]
39. \[y - 4 = \frac{3}{2}(x - 1); -3x + 2y = 5\]
40. \[y + 3 = 0(x - 6); y = -3\]
41. \[y + 2 = 2(x + 1); -2x + y = 0\]
42. \[y - 2 = 0(x - 0); y = 2\]
43. \[y - 6 = -\frac{1}{3}(x + 6); x + 3y = 12\]
44. \[y - 3 = -\frac{2}{3}(x - 2); 2x + 3y = 13\]
45. \[y + 3 = -\frac{7}{2}(x - 5); 7x + 2y = 29\]
46. \[y - 2 = -\frac{5}{3}(x - 2); 5x + 3y = 16\]
47. \[y - 1 = -\frac{1}{6}(x + 7); x + 6y = -1\]
48. \[y - 4 = -\frac{3}{2}(x + 8); 3x + 2y = -16\]
49. \[y - 4 = 2(x - 2); -2x + y = 0\]
50. \[y - 3 = -2(x - 5); 2x + y = 13\]
51. \[y - 1 = \frac{1}{3}x; -x + 3y = 3\]
52. \[y - 4 = -\frac{9}{2}(x + 2); 9x + 2y = -10\]
53. \[y - 2 = \frac{3}{5}(x - 6); -3x + 5y = -8\]
54. a. \[y = -\frac{1}{33}x + 1\]
 b. about 4 atmospheres
55. \[y = -2.6x + 315.6\]
Answers for Lesson 6-5, pp. 339–341 Exercises (cont.)

56. a. Answers may vary. Sample: \(y + 6 = 2(x + 4); \) chose slope and substituted into \(y - y_1 = m(x - x_1) \)

b. Infinitely many; any real number can be used for the slope.

57. \(y \)-intercept changes from \(-4\) to 4

58. Yes; the point satisfies the equation.

59. Answers may vary. Sample:
 a. \(y = x + 1 \)
 b. \(-x + y = 1\)
 c. \(y - 1 = 1(x - 0)\)

60. Answers may vary. Sample:
 a. \(y - 332 = \frac{3}{5}(x - 0)\)
 b. 341 m/s
 c. 368 m/s

61. \(y = 7x + 16 \)

62. \(y = 3 \)

63. \(y = \frac{2}{5}x - \frac{14}{5} \)

64. a. 14.75
 b. 57.5
 c. \(-4\)
 d. 100
Answers for Lesson 6-6, pp. 346–348 Exercises

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>$\frac{1}{2}$</td>
<td>2.</td>
<td>$-\frac{2}{3}$</td>
<td>3.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>0</td>
<td>5.</td>
<td>$-\frac{3}{4}$</td>
<td>6.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>no, different slopes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>yes, same slopes and different y-intercepts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>yes, same slopes and different y-intercepts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>no, different slopes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>yes, same slopes and different y-intercepts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>yes, same slopes and different y-intercepts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>$y = 6x$</td>
<td>14.</td>
<td>$y = -3x + 9$</td>
<td>15.</td>
<td>$y = -2x - 1$</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>$y = -\frac{7}{2}x - 20$</td>
<td>17.</td>
<td>$y = 0.5x - 9$</td>
<td>18.</td>
<td>$y = -\frac{2}{3}x + \frac{1}{3}$</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>$-\frac{1}{2}$</td>
<td>20.</td>
<td>$\frac{1}{3}$</td>
<td>21.</td>
<td>$\frac{5}{7}$</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>5</td>
<td>23.</td>
<td>$\frac{3}{2}$</td>
<td>24.</td>
<td>undefined</td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>$y = -\frac{1}{2}x$</td>
<td>26.</td>
<td>$y = -x + 10$</td>
<td>27.</td>
<td>$y = 3x - 10$</td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>$y = \frac{5}{3}x + \frac{11}{3}$</td>
<td>29.</td>
<td>$y = -\frac{4}{5}x + 24$</td>
<td>30.</td>
<td>$y = -\frac{1}{2}x + 2$</td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>$y = \frac{5}{4}x + 1$</td>
<td>32.</td>
<td>perpendicular</td>
<td>33.</td>
<td>parallel</td>
<td></td>
</tr>
<tr>
<td>34.</td>
<td>perpendicular</td>
<td>35.</td>
<td>neither</td>
<td>36.</td>
<td>parallel</td>
<td></td>
</tr>
<tr>
<td>37.</td>
<td>perpendicular</td>
<td>38.</td>
<td>parallel</td>
<td>39.</td>
<td>neither</td>
<td></td>
</tr>
<tr>
<td>40.</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.</td>
<td>$y = -\frac{4}{5}x - \frac{19}{5}$; $y = -\frac{4}{5}x + \frac{3}{5}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.</td>
<td>$y = \frac{1}{3}x + \frac{4}{3}$; $y = -3x + 7$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.</td>
<td>$y = -\frac{1}{2}x$; $y = 2x$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.</td>
<td>$y = \frac{2}{5}x + \frac{3}{5}$; $y = \frac{2}{5}x - \frac{24}{5}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.</td>
<td>$y = 4$; $y = 2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Answers for Lesson 6-6, pp. 346–349 Exercises (cont.)

46. \(y = x; \quad y = -x + 1 \)

47. about \(\frac{5}{4} \)

48. Answers may vary. Sample: same slope of \(-\frac{1}{2}\)

49. Answers may vary. Sample: \(\frac{5}{4} \cdot -\frac{1}{2} \neq -1 \)

50. a. The units on the axes are different, so the screen is not square.

b. The lines appear perpendicular.

51. Answers may vary. Sample: \(y = 4x + 1 \)

52. No; the slopes are not equal.

53. No; the slopes are not neg. reciprocals.

54. yes; same slopes and different \(y \)-intercepts

55. False; the product of two positive numbers can’t be \(-1\).

56. True; \(y = x + 2 \) and \(y = x + 3 \) are parallel.

57. False; all direct variations go through the point \((0, 0)\). If they have the same slope, they are the same line, not parallel lines.

58. The slopes of \(\vec{AD} \) and \(\vec{BC} \) are both undefined, so they are parallel. The slopes of \(\vec{AB} \) and \(\vec{CD} \) are both \(\frac{2}{3} \), so they are parallel. The quadrilateral is a parallelogram.

59. The slope of \(\vec{JK} \) is \(\frac{1}{3} \). The slope of \(\vec{KL} \) is \(-2\). The slope of \(\vec{LM} \) is \(\frac{1}{6} \). The slope of \(\vec{JM} \) is \(-4\). The quadrilateral is not a parallelogram.

60. The slopes of \(\vec{PQ} \) and \(\vec{RS} \) are both \(-\frac{1}{2}\). The slopes of \(\vec{QR} \) and \(\vec{SP} \) are both \(-\frac{3}{2}\). The quadrilateral is a parallelogram.
61. The slopes of \overrightarrow{AB} and \overrightarrow{CD} are both $\frac{2}{3}$. The slopes of \overrightarrow{BC} and \overrightarrow{AD} are both $-\frac{5}{2}$. The product is -1, so the quadrilateral is a rectangle.

62. The slopes of \overrightarrow{KL} and \overrightarrow{MN} are both $-\frac{1}{6}$. The slopes of \overrightarrow{LM} and \overrightarrow{KN} are both 5. The product is not -1, so the quadrilateral is not a rectangle.

63. The slopes of \overrightarrow{PQ} and \overrightarrow{RS} are both $\frac{1}{2}$. The slopes of \overrightarrow{PS} and \overrightarrow{QR} are both -2. The product is -1, so the quadrilateral is a rectangle.

64. \overrightarrow{BC} and \overrightarrow{AD} both have a slope of zero. \overrightarrow{BC} and \overrightarrow{AD} are parallel. \overrightarrow{AB} and \overrightarrow{CD} both have a slope of $\frac{4}{3}$. \overrightarrow{AB} and \overrightarrow{CD} are parallel. The diagonal \overrightarrow{BD} has a slope of -2. The diagonal \overrightarrow{AC} has a slope of $\frac{1}{2}$. The diagonals are perpendicular. $\square ABCD$ is a rhombus.

65. \overrightarrow{RP} has a slope of $\frac{2}{3}$. \overrightarrow{RQ} has a slope of $-\frac{3}{2}$. \overrightarrow{RP} is the neg. reciprocal of \overrightarrow{RQ}, so $\triangle PQR$ is a right triangle.

66. parallel

67. perpendicular

68. $y = -\frac{3}{8}x - \frac{17}{8}; y = \frac{8}{3}x + 7$

69. $y = \frac{1}{2}x - 3; y = -2x + 7$

70. $-1.5; 24$
Answers for Lesson 6-7, pp. 352–355 Exercises

1–6. Trend lines may vary. Samples given.

1. \(y - 52.5 = 2(x - 91) \)
2. \(y - 100 = 15.71(x - 5) \)
3. \(y - 16.4 = 0.64(x - 69.9) \)
4. \(y - 85 = -15.25(x - 1) \)
5. \(y - 7.5 = 0.06(x - 280) \)
6. \(y = 1.6x - 80; 40 \text{ in.} \)

7. \(y = -1.06x + 92.31; -0.970 \)
8. \(y = 10.60x - 772.66; 0.991 \)
9. \(y = -1.63x + 556.76; -0.725 \)
10. \(y = 2.64x + 70.51; 0.990 \)
11. \(y = 1.35x - 31.42; 1.000 \)

12. a. \[
\begin{array}{c|c}
\hline
x & y \\
2 & 28 \\
6 & 14 \\
10 & 8 \\
\hline
\end{array}
\]

b. Answers may vary. Sample: \(y = 3.25x - 1 \)

c. Answers may vary. Sample: The slope is the approximate ratio of the circumference to the diameter.

d. about 14 cm

13. a. \[
\begin{array}{c|c}
\hline
x & y \\
123 & 145 \\
127 & 141 \\
131 & 137 \\
135 & 133 \\
139 & 129 \\
\hline
\end{array}
\]

b. Answers may vary. Sample: \(y = 0.939x + 13.8 \)

c. 154,650,000

d. Answers may vary. Sample: No, the year is too far in the future.

14. a. Check students' work.

b. 1

15. Answers may vary. Sample: pos. slope; as temp. increases, more students are absent.
Answers for Lesson 6-7, pp. 352–355 Exercises (cont.)

16. a. \(y = 0.61x + 35.31 \)

b. Answers may vary. Sample: No; small set of data with weak correlation

17. \(y = 0.37x - 28.66; \$12.04 \) billion

18. a–d. Check students’ work.

19. a. \((2, 3)\) and \((6, 6)\);
 \(y = 0.75x + 1.5 \)

b. \(y = 0.75x + 1.21 \)

20. a. \(y = 4.82x - 29.65 \)

 ![Graph](image)

 b. 404 ft

 c. The speed is much faster than those speeds used to find the equation of a trend line.
Answers for Lesson 6-8, pp. 361–363 Exercises

1. Answers may vary. Sample: same shape, shifted 3 units up
2. Answers may vary. Sample: same shape, shifted 3 units down
3. Answers may vary. Sample: same shape, shifted 7 units down

4.

5.

6.

7.

8.

9.

10. $y = |x| + 9$
11. $y = |x| - 6$
12. $y = |x| + 0.25$
13. $y = |x| + \frac{5}{2}$
14. $y = |x| + 5.90$
15. $y = |x| - 1$
16.

17.

18.

19.

20.

21.

22. $y = |x + 9|$
23. $y = |x - 9|$
24. $y = |x - \frac{5}{2}|$
25. $y = |x + \frac{3}{2}|$
26. $y = |x + 0.5|$
27. $y = |x - 8.2|$
Answers for Lesson 6-8, pp. 361–363 Exercises (cont.)

28.

![Graph of y = \(-2 \)]

29.

![Graph of y = \(-2 \)]

30.

![Graph of y = \(-2 \)]

31.

![Graph of y = \(-2 \)]

32. \(y = -|x| + 2 \)

33. \(y = -|x + 2.25| \)

34. \(y = -|x| - \frac{3}{2} \)

35. \(y = -|x - 4| \)

36. B

37.

![Graph of y = \(-2 \)]

38.

![Graph of y = \(-2 \)]

39.

![Graph of y = \(-2 \)]

40.

![Graph of y = \(-2 \)]

41. a.

![Graph of y = \(-2 \)]

b. \((2, 3)\)
Answers for Lesson 6-8, pp. 361–363 Exercises (cont.)

c. Answers may vary. Sample: The x-coordinate is the horizontal translation, and the y-coordinate is the vertical translation.

d. Use (a, b) for the vertex. Graph part of $y = x$ and part of $y = -x$ above the vertex.

42. a. Tables may vary. Sample:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

43. a. $y = |x|; y = 1$

b. -1 and 1

c. $y = -\frac{1}{2}x$ or $y = -\frac{1}{2}x + 2$